
REF~ENCES 

I. M#ISEYEV N.N., On the non-uniqueness of the possible forms of steady flows of a heavy 
fluid for Froude numbers close to unity. PMN, 21, 6, 1951. 

2. GUZEVSKII L.G., The flow of a heavy fluid of finite depth past obstacles, in: Dynamics of 
a Continuous Medium.with Interfaces, Izd Chuvash. Univ., Cheboksary, 1982. 

3. KOTLYAR L.'M, and TROYEPGL'SKAYA O.V*, Flow of a jet of heavy fluid through an opening in a 
horizontal wall, in the presence of a free surface, Proceedings of the Seminar on 
Boundary Value Problems, I&. Kazan. Univ. 22, 1985. 

4, KGCHIN N.E., KIEEL' I.A- and ROZE N.V., Theoretical Hydroaechanics, 1, Fizmatgiz, Moscow, 
1963. 

5. IVANOV A.N., Hydrddynamics of Developea Cavitational Flows. Sudostroyeniye. Leningrad, 
1980. 

6. AMROMIN E.L., BUSHKOVSKII V.A. and DIANOV D-I., Developed cavitation behind a disc in a 
vertical pipe. IzV, Akad. Nauk SSSR, MZhG, 5, 1983. 

7. ZABOREIKQ P.P., KOSHELEV A.I., KRASNGSEL'SKII M.A., et al., Integral Equations. Nauka, 
Moscow, 1968. 

8. T~R~NT~y~ A.G. and AFANAS'YEV K.E., Numerical Methods in Hydromechanics. Izd. Chuvash, 
Univ. Cheboksary, 1987, 

Translated by L.K. 

PMM U,S.S.R.,Vol.54,Na,l,~p. 137-142,lggG DO21-8928~9~ $l~.OOiO.OO 
Printed in Great Britain 81991 Pergaaon Press plc 

LOWER &STr~AT~S OF THE C~A~ACT~~~ST~C F~~~~~NC~~S OF THE ~SC~~~AT~~~S OF A 
LfQUfD WITH A FREE SURFACE IN CHANNELS OF ARBITRARY CROSS-SECTION" 

V.I. TARRKANOY 

Lower estimates are obtained for the leading characeristlc frequency af 
oscillations of a liquid in a channel of arbitrary cross-section vith 
several sections of the free surface of the liquid. The case of 
oscillations in the plane of the cross-section of the channel is 
considered. The domain occupied by the cross-section can be multiply 
connected an8 bounded by a piecewise smooth curve. The dexivation of the 
estimates is not connected with the need to find standard domins and is 
not based on variational methods fl-3f. 

a. The boundary eigenvalue problem 

is considered for a multiply connected domain DIcR"(~, I) bounded by a piece&se-smooth curve 
P consisting of a number of closed curves. F has m segments r, for j = 1,2-..m, where 
boundary conditions corresponding to the conditions on the free surface of the liquid are 
given. rj : y = hj, al<xc:bj, j=t, z...m, r,=r,ur,~ ...fnI. 

It is assumed that the segments of the free surface cam be placed at different levels iJ = & 
(for example, to maintain different pressures of gases over different sections of the surface), 
In the general case, the segments rj may belong to different closed curves of the contour P, 
Apart from a dimensional factor, w is identical with the characteristic frequency of oscil- 
lations of the liquid. Thus, in what follows it is called simply the frequency af character- 
istic oscillations of the liguid. 
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The eigenfunctions of problem (1.1) are sought in the class 

2. As a preliminary, we will consider the special case of a star-shaped domain D. BY a 
star-shaped domain with respect to a point Q(E, rl) ED we mean a domain whose boundary is 
intersected only once by any ray starting from Q in such a way that the ray is not tangent 
to the boundary. Apart from Cartesian coordinates, a system of polar coordinates P,cp with 
centre at Q is introduced: z-E= Pcoscp and y--q= Psincp. The segment of I' contained between 
the rays 'p= fi and cp==fi+a is denoted by r(a,fi). The domain D is characterized by the 
following parameters expressed in terms of the distance between two points M(X, U) and Q(E, q): 

where cos IIP is the cosine function of the angle between the normal to r and the extension 
of the ray.connecting Q and A'. Since the domain is star-shaped, the co! 

Let an arbitrary function 

@ (5, I/) = C (5, Y) - C(Q) 

be given in D, where U is a function belonging to the class defined by 

Theorem 1. For any function a from the class defined by (l.l), ( 
estimate 

s 
W ds < xE, E_= (U’,tr +@,,do 

I- CCL. n, 

ndition a>0 holds. 

(2.2) 

(1.1) and (1.3). 

1.3), and (2.21, the 

(2.3) 

(2.4) 

holds on the boundary. 

Proof. In D we choose a circle 6 of radius r, centre Q, and boundary 7. The deriva- 
tives I@‘,% I and I o,, I satisfy the Courant inequality /4j 

where d = d (I, II, 5, q) is the minimum distance between M (5, Y) and p 
Since inequality (2.5) is independent of rotations of the coordinate axes, the estimate 

also holds in polar coordinates: 

The estimate 

follows from (2.6). 
For a sector a~6 o'of a circle such that e<p<r and B<cp<tl+-a, the Green 

integral identity 

(2.6) 

(2.7) 

can be written down, where h is the boundary of the sector, and '4 is an arbitrary 
function with continuous second-order derivatives. If Y depends only on P, then the relation 
takes the form 



Setting Y =lnp in (2.8), using (2.7) and (2.6), and passing to the limit as e-+0, we 

obtain the estimate 

(2.9) 

To derive (2.9), the Hzlderinequality is used and the integral on the right-hand side 
is replaced by its numerical value. 

Next, we write down the integral identity (2.8) for the domain GcI) bounded by the 

curves r (c, p) and Yfu, p) and by the rays tp=B and 'p=f3+a: 

Substituting 'i& - '/a~~ hi (p/r) for r in this identity and using the notation given in 
(2-l), we find that 

(2.11) 

(Z.fZ) 

If we now substitute lnp for '9 in (2+f0), we shall find using (2.9) that 

(2.13) 

The inequality 
I < 3.34WE, f 2(b + c) r (IE& “:* 

can be derived from the system of inequalities (2.11) and (2.13). Hence, solving the quadratic 
equation, we finally find-that 

I < (b + c) rfl% f [r9 (b + c)% E, + 3.34bPE#’ 

It follows from (2.13) and (2.14) I taking (2.1) into account, that 

a 
-;_ s 

@‘2ds < 3.3=%E1 + 2 (b + c) E, + 2 [(b _t c)* E? + 3.34~&&1”’ $ 

rm, B) 
2 [(b + c)Waa + 3.346&E, f (3..%+ 8-W (b + c)-~ E9”’ -t 3.34Bi + 

2fb~c)E~=3.34(cf2b)(bfc)-‘E~-t_4(b+c) Es 

Now, using inequality (2.12), we obtain the result of the theorem. 
On the basis of (2.4), the parameter x in estimate (2.3) fox any 

of an arbitrary star-shaped domain is easy to evaluate by a geometrical 
a square with sides 1, a sector of the form of a quarter of a circle or 

(2.14) 

segment of the boundary 
argument. Thus, for 
radius 1, an egui- 

lateral triangle with slides 2, and for a right-angled isosceles triangle with hypotenuse 1, 
the parameters x have the following values 

x. = 3.41,x = 4&L, x = 10,.X, ft = 22.81 (2.C) 

provided each of the points Qd is chosen to be at the centre of the corresponding inscribed 
circle and the segmentr(%,fi) is chosen to be either a side of the square,or a radial side of 
the sector, or a side of the equilateral triangle, or the hypotenuse of the right-angled tri- 
angle, respectively. 
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3. Using Theorem 1, we can obtain a more general result for an arbitrary domain D, 
which is not necessarily star-shaped and has boundary r. We denote by ra an arbitrary part 
0f r: r,c r. It is assumed that there are n arbitrary points Qi(&,,ni)cD for i = 1, 2...n 
and n star-shaped domains DiCD with respect to the points QI such that boundaries ri 
of the domains have common points with r and the relations 

ra= rr, u rza u . . . ma, ria = ri n ra. i = 1,2...~ (3.') 

are satisfied. 
An arbitrary central point QO is chosen in D so that it can be connected with each of 

the points Qi for i= 1, 2...n by a curve yi E D contained in D that does not touch the 
boundary r. 

Three parameters Xiv k7 and Pi are associated with each domain Di where ++ is defined 
by (2.4) for any star-shaped domain Di with ria used as the segment of the boundary of Di 

that appears in the definition of 'A, and where li and qi are given by the relations 

IL = 5 ds, qi = s p-‘(s) ds (3.2) 
ria yi 

Here ds is an element of the arc of the curve, and P (s) is the minimum distance between 

2 (s)> Y ts) E Yi and the points of r. The function Di = U(z,y)- U(Qi) is introduced for each 
domain, where U is a function belonging to the class described by Eqs.(l.l) and (1.3). The 
integral 

is denoted by Ei. 

Theorem 2. For the function D= lJ(z,y) - U(Qo) belonging to the class described by (1.1) 
and (1.3), the estimate 

S Q2ds< xE (3.4) 

ra 

(3.5) 

holds. 

Proof. Using Courant's inequality (2.5) for D and taking into account that the inequality 
is independent of the rotation of the coordinate axes, one can write the following: 

IQ+! < p-' (s)m 2 (s), Y (s) E Yi 

Hence, using notation (3.2), we have 

Taking into account that inequalities (2.3) hold for Q(~cD(z,y)- O(Qi), we find that 

(3.6) 

(3.7) 

On the basis of relations (3.6) and (3.7) we obtain the estimate 
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Using the HGlder inequalities for the sum Vz+..*+fK I we obtain the theorem. 
In the special case when ra= r, the result of the theorem with a different expression 

for the coefficient was proved in IS/ far a domain with a smooth boundary. In practice, one 

can obtain estimate (3.4), (3.51 for an arbitrary domain using a collection of standard star- 
shaped domains, for which )c is found in advance from the relations stated in Theorem 1. 

4. On the basis of Theorem 2, using the notation of this.theorem, we obtain a lower 
estimate for the leading characteristic frequency of oscillations of the liquid. 

Theorem 3. The leading characteristic frequency m1 of oscillations of the liquid, which 
can be determined from the solution of problem (l-l), (1.21, is bounded from below by 

%, = SC”“, @I>%& 

where x is defined by (3.51, and the segment r, of the boundary represents the free surface 
of the liquid. 

Proof. It follows from(3.4) and from the boundary conditions of the problem that 

Besides, from (1.1) we find the following relations: 

By substituting this inequality into (4.1), we obtain the result of Theorem 3. 

5. As an example, a domain D is shown in the figure,. D is bounded by a piecewise-smooth 
curve A,A,...A? with two sections A,AB ana A,& representing the free surface of the 
liquid, which are marked by a double line. D is symmetrical about the axis Z= O. The points 
Ai have the following coordinates: Al (% 0)s A, Pi,, h), Aa ('/a - 
AT (-‘f,, 0). 

h, h), Aa (0, p), A, (h-Vs. h) A6 (--lf$, h), 
It fOlloWS from geometrical ConSiderationS that h<lf,,h>~. To fix our ideas, 

we will set h>h. Two star-shaped domains Di,i =1,2 are chosen in D represented by the 
squares BIBsA,A, and B,BIA,A, with centres at Qi, where QI pf,-2J2, h-.ti2), Qa W - ‘b. 
h - 2&t). The characteristic point Q. has the following coordinates: Qo (0, P&* 

As the curves y* connecting Q. and -z L , 
‘&ivjf choose QoCtQl and QoCpQa. On the ba~~so;~,?n~~:f$;;$~: 

and some geometrical considerations 
ing expressions for the geometrioal parameters: 

5 
y_, 

-1 

A, A, I Substituting the values of the parameters into (3.5), we 
can obtain the following algebraic expression for the lower 
estimate of the leading characteristic frequency: 

It is interesting to know how much underestimated the leading characteristic frequency 
is compared with the exact value. We can make this comparison in cases where the exact value 
of the leading characteristic frequency for the problem is known. 
form with depth 

For a channel of rectangular 

equal to 
h and width 1 the exact value of the leading characteristic frequency is 
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If the ratio of the depth and the width is h/l = 1 or h/2 = 0.25 then the leading character- 
istic frequency is equal to 

respectively. 
For h/l= 1, a square with side 1 can be chosen as the auxiliary star-shaped domain and, 

on the basis of (2.15), we have x = 3.41. If h/l = 0.25, then four squares with sides 114 
can be chosen as the auxiliary domains, Q0 can be chosen at the centre of the rectangle, the 
points Qd can be chosen at the centres of the squares, and rectilinear intervals connecting 

QO with Qi can be chosen as the curves ~3. Then, x= 5.441. Therefore, the lower estimates 
for the characteristic frequencies for the ratios hll = 1 and h/l = 0.25 are 

or0 = 0.54?'*, 010 = 0.431~'1' 

respectively. 
A comparison with the exact values indicates that the characteristic frequency is under- 

estimated approximately by a factor of three. For a cylindrical channel of diameter l and 
depth h = 112, the approximate numerical value of the leading characteristic frequency is 
01% 1.41-"2 /2/. The lower estimate can be obtained by choosing two sectors of radius 112 
and central angle n/2 as the auxiliary domains. Then, by (2.15) and (3.5), x = 6.571 and the 
lower estimate for the frequency is o10 = 0.41-'/a. 

The value of x can be reduced, and so a better lower estimate for the frequency can be 
obtained, by a more optimal choice of the decomposition of the given domain into a system of 
star-shaped domains. 

In practice, it may be best to use the estimates if the domain under consideration has a 
complex shape and the value of the leading characteristic frequency plays the role of a 
restriction (not necessarily the main one) for planning the construction. In this case the 
optimal version of the construction can be chosen by introducing a bound for the lower estimate 
rather than for the frequency itself. This makes optimal computations significantly simpler, 
since a number of algebraic formulae can be obtained for the estimate and the difference 
between the frequency and its lower estimate may provide a margin for the stability of the con- 
struction. The lower estimate can also be used to carry out some preliminary approximate 
computations and to test computer programs for finding numerical solutions of the problems 
concerning oscillations of a liquid, which should produce a value of the leading characteristic 
frequency that exceeds the estimate obtained in Theorem 3. 
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